Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Over a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.more » « less
-
Abstract. The mesoscale meteorology of lake breezes along Lake Michiganimpacts local observations of high-ozone events. Previous manned aircraftand UAS observations have demonstrated non-uniform ozone concentrationswithin and above the marine layer over water and within shorelineenvironments. During the 2021 Wisconsin's Dynamic Influence of ShorelineCirculations on Ozone (WiscoDISCO-21) campaign, two UAS platforms, afixed-wing (University of Colorado RAAVEN) and a multirotor (PurdueUniversity DJI M210), were used simultaneously to capture lake breeze duringforecasted high-ozone events at Chiwaukee Prairie State Natural Area insoutheastern Wisconsin from 21–26 May 2021. The RAAVEN platform (data DOI:https://doi.org/10.5281/zenodo.5142491, de Boer et al., 2021) measured temperature, humidity, and 3-D winds during2 h flights following two separate flight patterns up to three times per dayat altitudes reaching 500 m above ground level (a.g.l.). The M210 platform (data DOI: https://doi.org/10.5281/zenodo.5160346, Cleary et al., 2021a) measured vertical profiles of temperature, humidity,and ozone during 15 min flights up to six times per day at altitudesreaching 120 ma.g.l. near a Wisconsin DNR ground monitoringstation (AIRS ID: 55-059-0019). This campaign was conducted in conjunctionwith the Enhanced Ozone Monitoring plan from the Wisconsin DNR that included Dopplerlidar wind profiler observations at the site (dataDOI: https://doi.org/10.5281/zenodo.5213039, Cleary et al., 2021b).more » « less
-
ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.more » « less
An official website of the United States government
